Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан треугольник $ABC$. Прямая $AB$ касается его вписанной окружности в точке $C'$, а вневписанной, касающейся стороны $BC$, – в точке $C'_a$. Аналогично определяются точки $C'_b$, $C'_c$, $A'$, $A'_a$, $A'_b$, $A'_c$, $B'$, $B'_a$, $B'_b$, $B'_c$. Рассмотрим длины 12 отрезков – высот треугольников $A'B'C'$, $A'_aB'_aC'_a$, $A'_bB'_bC'_b$, $A'_cB'_cC'_c$.

а) Какое наибольшее число различных может быть среди них?

б) Найдите все возможные количества различных длин.

Вниз   Решение


В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший.
Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.

ВверхВниз   Решение


Натуральное число a увеличили на 1, а его квадрат увеличился на 1001. Чему равно a?

ВверхВниз   Решение


Отрезки АС и BD пересекаются в точке О. Периметр треугольника АВС равен периметру треугольника АВD, а периметр треугольника ACD равен периметру треугольника BCD. Найдите длину АО, если ВО = 10 см.

ВверхВниз   Решение


В треугольной пирамиде AKLM известно, что AK = AL = AM , KL = LM = MK , tg AKM = . Сфера радиуса 2 касается луча LA , касается плоскости AKM и касается плоскости KLM в точке, лежащей на луче LM . Найдите наименьшее возможное значение длины отрезка LM

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 87379

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Правильная пирамида ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде AKLM известно, что AK = AL = AM , KL = LM = MK , tg AKM = . Сфера радиуса 2 касается луча LA , касается плоскости AKM и касается плоскости KLM в точке, лежащей на луче LM . Найдите наименьшее возможное значение длины отрезка LM
Прислать комментарий     Решение


Задача 110425

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Дана пирамида ABCD . Сфера касается плоскостей DAB , DAC и DBC в точках K , L и M соответственно. При этом точка K находится на стороне AB , точка L – на стороне AC , точка M – на стороне BC . Известно, что радиус сферы равен 3, ADB = 90o , BDC = 105o , ADC = 75o . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 110426

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Дана пирамида ABCD . Сфера касается плоскостей ABC , ACD и ADB в точках K , L и M соответственно. При этом точка K находится на стороне BC , точка L – на стороне CD , точка M – на стороне DB . Известно, что радиус сферы равен , BAC = 90o , CAD = 75o , DAB = 75o . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 110455

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник ABC со стороной 2 . Рёбра SB и SC равны. Шар касается сторон основания, плоскости грани SBC , а также ребра SA . Чему равен радиус шара, если SA= ?
Прислать комментарий     Решение


Задача 110456

Темы:   [ Сфера, касающаяся ребер или сторон пирамиды ]
[ Теорема косинусов ]
Сложность: 4
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник ABC со стороной 4 . Рёбра SB и SC равны. Шар касается сторон основания, плоскости грани SBC , а также ребра SA . Чему равен радиус шара, если SA=3 ?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .