ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.
Все рёбра пирамиды ABCD равны между собой. Нарисуйте изображение пирамиды ABCD , полученное в результате ортогонального проектирования на плоскость, параллельную AB и CD . Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли На прямой l в пространстве последовательно расположены точки A , B и C , причём AB = 10 и BC = 22 . Найдите расстояние между прямыми l и m , если если расстояния от точек A , B и C до прямой m равны 12, 13 и 20 соответственно. В море плавает предмет, имеющий форму выпуклого многогранника. Пусть
( На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD
взяты точки K, L, M и N соответственно, причем
AK : KB = DM : MC = Точка X лежит внутри треугольника ABC. Прямые,
проходящие через точку X параллельно AC и BC, пересекают
сторону AB в точках K и L соответственно. Докажите, что
барицентрические координаты точки X равны
(BL : AK : LK).
В таблицу записано девять чисел: a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её
столбцов: a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.
Докажите, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то его объём не меньше ⅓ h1h2h3. Нарисуйте изображение куба, полученное в результате ортогонального проектирования куба на плоскость, перпендикулярную: а) одному из рёбер; б) диагонали одной из граней. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 262]
Все рёбра пирамиды ABCD равны между собой. Нарисуйте изображение пирамиды ABCD , полученное в результате ортогонального проектирования на плоскость, параллельную AB и CD .
Нарисуйте изображение куба, полученное в результате ортогонального проектирования куба на плоскость, перпендикулярную: а) одному из рёбер; б) диагонали одной из граней.
Расстояния от концов отрезка до плоскости равны 1 и 3. Чему может быть равно расстояние от середины этого отрезка до той же плоскости?
Плоскость, проходящая через середины рёбер AB и CD треугольной пирамиды ABCD делит ребро AD в отношении 3:1, считая от вершины A . В каком отношении эта плоскость делит ребро BC ?
Две противоположные вершины единичного куба совпадают с центрами оснований цилиндра, а остальные вершины расположены на боковой поверхности цилиндра. Найдите высоту и радиус основания цилиндра.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 262]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке