Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Две параллельные прямые пересечены третьей. Найдите угол между биссектрисами внутренних односторонних углов.

Вниз   Решение


100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку.
Можно ли с помощью таких операций переставить все фишки в обратном порядке?

ВверхВниз   Решение


Известно, что  x + 1/x  – целое число. Докажите, что  xn + 1/xn  – также целое при любом целом n.

ВверхВниз   Решение


Докажите тождество: 12 + 22 +...+ n2 = $\displaystyle {\textstyle\frac{1}{6}}$n(n + 1)(2n + 1).

ВверхВниз   Решение


При каких значениях параметра a один из корней уравнения   x² – 15/4 x + a³ = 0  является квадратом другого?

ВверхВниз   Решение


При каком положительном значении p уравнения  3x² – 4px + 9 = 0  и  x² – 2px + 5 = 0  имеют общий корень?

ВверхВниз   Решение


На прямой отметили несколько точек. После этого между каждыми двумя соседними точками добавили по точке. Такую операцию повторили три раза, и в результате на прямой оказалось 65 точек. Сколько точек было вначале?

ВверхВниз   Решение


В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?

ВверхВниз   Решение


У Джона была полная корзина тремпончиков. Сначала он встретил Анну и дал ей половину своих тремпончиков и еще полтремпончика. Потом он встретил Банну и отдал ей половину оставшихся тремпончиков и еще полтремпончика. После того, как он встретил Ванну и снова отдал ей половину тремпончиков и еще полтремпончика, корзина опустела. Сколько тремпончиков было у Джона вначале? (Что такое тремпончики выяснить не удалось, так как к концу задачи их не осталось.)

ВверхВниз   Решение


Несколько прямых делят плоскость на части. Докажите, что эти части можно раскрасить в 2 цвета так, что граничащие части будут иметь разный цвет.

ВверхВниз   Решение


Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые – направо, а остальные – кругом.
Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?

ВверхВниз   Решение


Изобразите ту часть плоскости (x;y), которая накрывается всевозможными кругами вида

(x - a)2 + (y - a)2 $\displaystyle \leqslant$ 2 + a2.


ВверхВниз   Решение


Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток.

ВверхВниз   Решение


На каждой из клеток доски размером 9×9 находится фишка. Петя хочет передвинуть каждую фишку на соседнюю по стороне клетку так, чтобы снова в каждой из клеток оказалось по одной фишке. Сможет ли Петя это сделать?

ВверхВниз   Решение


Докажите, что на координатной плоскости можно провести окружность, внутри которой лежит ровно n целочисленных точек.

ВверхВниз   Решение


Матч между двумя футбольными командами закончился со счетом 8:5. Доказать, что был момент, когда первая команда забила столько же мячей, сколько второй оставалось забить.

ВверхВниз   Решение


8 теннисистов провели круговой турнир. Докажите, что найдутся 4 теннисиста A,B,C,D, такие что A выиграл у B,C,D, B выиграл у C и D, C выиграл у D.

ВверхВниз   Решение


Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2.

ВверхВниз   Решение


Найдите все значения x, удовлетворяющие неравенству  (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4aa² < 0  хотя бы при одном значении a из отрезка  [–1, 2].

ВверхВниз   Решение


Обязательно ли среди двадцати пяти "медных" монет (т.е. монет достоинством 1, 2, 3, 5 коп.) найдётся семь монет одинакового достоинства?

ВверхВниз   Решение


В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 87942

Тема:   [ Обратный ход ]
Сложность: 2-
Классы: 5,6,7

В озере растут лотосы. За сутки каждый лотос делится пополам, и вместо одного лотоса появляются два. Ещё через сутки каждый из получившихся лотосов делится пополам и так далее. Через 30 суток озеро полностью покрылось лотосами. Через какое время озеро было заполнено наполовину?
Прислать комментарий     Решение


Задача 104052

Тема:   [ Обратный ход ]
Сложность: 2
Классы: 7,8

Крестьянин, покупая товары, уплатил первому купцу половину своих денег и ещё 1 рубль; потом уплатил второму купцу половину оставшихся денег да ещё 2 рубля и, наконец, уплатил третьему купцу половину оставшихся да ещё 1 рубль. После этого денег у крестьянина не осталось. Сколько рублей у него было первоначально?
Прислать комментарий     Решение


Задача 32102

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Итерации ]
Сложность: 2+
Классы: 5,6,7,8

У Джона была полная корзина тремпончиков. Сначала он встретил Анну и дал ей половину своих тремпончиков и еще полтремпончика. Потом он встретил Банну и отдал ей половину оставшихся тремпончиков и еще полтремпончика. После того, как он встретил Ванну и снова отдал ей половину тремпончиков и еще полтремпончика, корзина опустела. Сколько тремпончиков было у Джона вначале? (Что такое тремпончики выяснить не удалось, так как к концу задачи их не осталось.)

Прислать комментарий     Решение

Задача 35552

Тема:   [ Обратный ход ]
Сложность: 2+
Классы: 7,8

На прямой отметили несколько точек. После этого между каждыми двумя соседними точками добавили по точке. Такую операцию повторили три раза, и в результате на прямой оказалось 65 точек. Сколько точек было вначале?

Прислать комментарий     Решение

Задача 103770

Темы:   [ Обратный ход ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3-
Классы: 7

Решите уравнение:

1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : x))))).

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .