Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 20 задач
Версия для печати
Убрать все задачи

Крестьянину надо перевезти через речку волка, козу и капусту. Лодка вмещает одного человека, а с ним либо волка, либо козу, либо капусту. Если без присмотра оставить козу и волка, волк съест козу. Если без присмотра оставить капусту и козу, коза съест капусту. Как крестьянину перевезти свой груз через речку?

Вниз   Решение


Существует ли такая бесконечная последовательность натуральных чисел, что для любого натурального k сумма любых k идущих подряд членов этой последовательности делится на  k + 1?

ВверхВниз   Решение


На плоскости нарисовано 12 прямых, проходящих через точку О. Докажите, что можно выбрать две из них так, что угол между ними будет меньше 17 градусов.

ВверхВниз   Решение


Какое самое большое число ладей можно поставить на шахматную доску 8 на 8 так, чтобы они не били друг друга?

ВверхВниз   Решение


Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми).

ВверхВниз   Решение


В магазин привезли 25 ящиков с тремя разными сортами яблок (в каждом ящике яблоки только одного сорта). Докажите, что среди них есть по крайней мере 9 ящиков с яблоками одного и того же сорта.

ВверхВниз   Решение


Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

ВверхВниз   Решение


Докажите, что  SABC $ \leq$ AB . BC/2.

ВверхВниз   Решение


Сто человек сидят за круглым столом, причём более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

ВверхВниз   Решение


Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?

ВверхВниз   Решение


Даны отрезки AB, CD и точка O. Конец отрезка называется "отмеченным", если прямая, проходящая через него и точку O, не пересекает другой отрезок. Сколько может быть отмеченных концов?

ВверхВниз   Решение


Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

ВверхВниз   Решение


Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

ВверхВниз   Решение


Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец  — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы?

ВверхВниз   Решение


На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число  a + b – 1.
Какое число может остаться на доске после 19 таких операций?

ВверхВниз   Решение


Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.

ВверхВниз   Решение


Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.

ВверхВниз   Решение


Докажите, что две непересекающиеся окружности S1 и S2 (или окружность и прямую) можно при помощи инверсии перевести в пару концентрических окружностей.

ВверхВниз   Решение


Существует ли такая бесконечная последовательность, состоящая из
  а) действительных
  б) целых
чисел, что сумма любых десяти подряд идущих чисел положительна, а сумма любых первых подряд идущих  10n + 1  чисел отрицательна при любом натуральном n?

ВверхВниз   Решение


Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка – в 5 и 8 л. Попробуйте, пользуясь этими бочонками:
  а) разделить квас на две части – 3 и 9 л;
  б) разделить квас на две равные части.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 276]      



Задача 35703

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8

У Вани работает 10 сотрудников. Каждый месяц Ваня повышает зарплату на 1 рубль ровно девятерым (по своему выбору).
Как Ване повышать зарплаты, чтобы сделать их одинаковыми? (Зарплата – целое число рублей.)

Прислать комментарий     Решение

Задача 87963

Темы:   [ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
Сложность: 2+
Классы: 5,6,7,8

Крестьянину надо перевезти через речку волка, козу и капусту. Лодка вмещает одного человека, а с ним либо волка, либо козу, либо капусту. Если без присмотра оставить козу и волка, волк съест козу. Если без присмотра оставить капусту и козу, коза съест капусту. Как крестьянину перевезти свой груз через речку?
Прислать комментарий     Решение


Задача 87982

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 5,6,7

Имеются 12-литровый бочонок, наполненный квасом, и два пустых бочонка – в 5 и 8 л. Попробуйте, пользуясь этими бочонками:
  а) разделить квас на две части – 3 и 9 л;
  б) разделить квас на две равные части.

Прислать комментарий     Решение

Задача 88131

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 5,6,7

Трое туристов должны перебраться с одного берега реки на другой. В их распоряжении старая лодка, которая может выдержать нагрузку всего в 100 кг. Вес одного из туристов 45 кг, второго  — 50 кг, третьего  — 80 кг. Как должны они действовать, чтобы перебраться на другой берег?
Прислать комментарий     Решение


Задача 98363

Темы:   [ Теория алгоритмов (прочее) ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 6,7,8

Первоначально на каждом поле доски 1×n стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за  n – 1  ход можно собрать все шашки на одной клетке.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 276]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .