ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины
которых лежат на окружности. Три купчихи – Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна – сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоём 11 чашек, Поликсена Уваровна и Олимпиада Карповна – 15, а Сосипатра Титовна и Поликсена Уваровна – 14. Сколько чашек чая выпили все три купчихи вместе? На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках? В классе учатся 38 человек. Докажите, что среди них найдутся четверо, родившихся в один месяц. На кошачьей выставке в ряд сидят 10 котов и 19 кошек, причём рядом с каждой кошкой сидит более толстый кот. Две окружности с центрами O1 и O2 пересекаются в точках A и B. Биссектриса угла O1AO2 повторно пересекает окружности в точках C и D. Боковые рёбра треугольной пирамиды попарно перпендикулярны и равны a , b и c . Найдите радиус описанной сферы. У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать). Известно, что p > 3 и p – простое число. Как вы думаете: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 420]
Докажите, что произведение любых трёх последовательных натуральных чисел делится на 6.
Как вы думаете, среди четырёх последовательных натуральных чисел будет ли хотя бы одно делиться а) на 2? б) на 3? в) на 4? г) на 5?
На затонувшей каравелле XIV века были найдены шесть мешков с золотыми монетами. В первых четырёх мешках оказалось по 60, 30, 20 и 15 золотых монет. Когда подсчитали монеты в оставшихся двух, кто-то заметил, что число монет в мешках составляет некую последовательность. Приняв это к сведению, смогли бы вы сказать, сколько монет в пятом и шестом мешках?
Известно, что p > 3 и p – простое число. Как вы думаете:
Ковбой Билл зашёл в бар и попросил у бармена бутылку виски за 3 доллара и шесть коробков непромокаемых спичек, цену которых он не знал. Бармен потребовал с него 11 долларов 80 центов (1 доллар = 100 центов), и в ответ на это Билл вытащил револьвер. Тогда бармен пересчитал стоимость покупки и исправил ошибку. Как Билл догадался, что бармен пытался его обсчитать?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 420]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке