ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа. Докажите, что при центральной симметрии окружность переходит в окружность.
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника. Докажите, что многочлен x44 + x33 + x22 + x11 + 1 делится на x4 + x3 + x2 + x + 1. Чему равно произведение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 266]
Разложить на множители: (b – c)³ + (c – a)³ + (a – b)³.
Чему равно произведение
Несократимая дробь $\frac{a}{b}$ такова, что $$ \frac{a}{b}=\frac{999}{1999}+\frac{999}{1999}\cdot \frac{998}{1998}+\frac{999}{1999}\cdot\frac{998}{1998}\cdot \frac{997}{1997}+\ldots + \frac{999}{1999}\cdot \frac{998}{1998}\cdot \ldots \cdot \frac{1}{1001}. $$ Найдите $a$ и $b$.
Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат.
a, b и n – натуральные числа, и n нечётно. Докажите, что если числитель и знаменатель дроби
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 266]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке