Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

При каких значениях параметра a уравнение  (a – 1)x² – 2(a + 1)x + 2(a + 1) = 0  имеет только одно неотрицательное решение?

Вниз   Решение


Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде  BzB z + C = 0,  где C – чисто мнимое число.

ВверхВниз   Решение


В прямоугольнике 3×n стоят фишки трёх цветов, по n штук каждого цвета.
Доказать, что можно переставить фишки в каждой строке так, чтобы в каждом столбце были фишки всех цветов.

ВверхВниз   Решение


На стол кладут правильный 100-угольник, в вершинах которого написаны числа 1, 2, ..., 100. Затем эти числа переписывают в порядке удаления от переднего края стола. Если две вершины находятся на равном расстоянии от края, сначала выписывается левое число, затем правое. Выписаны всевозможные наборы чисел, соответствующие разным положениям 100-угольника. Вычислить сумму чисел, стоящих в этих наборах на 13-х местах слева.

ВверхВниз   Решение


При каких значениях параметра a оба корня уравнения  (2 – a)x² – 3ax + 2a = 0  больше ½?

ВверхВниз   Решение


На доске написаны 2n последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего числа меньшее, все замены происходят одновременно). Докажите, что на доске больше никогда не появятся 2n последовательных чисел.

ВверхВниз   Решение


В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

ВверхВниз   Решение


Отрезок длиной 3n разбивается на три равные части. Первая и третья из них называются отмеченными. Каждый из отмеченных отрезков разбивается на три части, из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются отмеченными точками. Доказать, что для любого целого k(1$ \le$k$ \le$3n) можно найти две отмеченные точки, расстояние между которыми равно k.

ВверхВниз   Решение


Сколько существует двузначных чисел, у которых цифра десятков больше цифры единиц?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 499]      



Задача 88222

Темы:   [ Десятичная система счисления ]
[ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

Я купил лотерейный билет, у которого сумма цифр его пятизначного номера оказалась равна возрасту моего соседа. Определите номер этого билета, если известно, что мой сосед без труда решил эту задачу.
Прислать комментарий     Решение


Задача 88284

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6,7

Сколько существует двузначных чисел, у которых цифра десятков больше цифры единиц?
Прислать комментарий     Решение


Задача 98708

Тема:   [ Десятичная система счисления ]
Сложность: 2
Классы: 4,5

Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

Прислать комментарий     Решение

Задача 102806

Тема:   [ Десятичная система счисления ]
Сложность: 2
Классы: 5,6,7

Числа по кругу. Расставьте по кругу числа 14, 27, 36, 57, 178, 467, 590, 2345 так, чтобы любые два соседних числа имели общую цифру.
Прислать комментарий     Решение


Задача 102834

Тема:   [ Десятичная система счисления ]
Сложность: 2
Классы: 6,7

Из числа 1234567...5657585960 вычеркнуть 100 цифр так, чтобы оставшееся число было:  а) наименьшим;  б) наибольшим.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .