ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 106]      



Задача 97843

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Доказать, что среди 18 последовательных трёхзначных чисел найдётся хотя бы одно, которое делится на сумму своих цифр.

Прислать комментарий     Решение

Задача 97863

Темы:   [ Признаки делимости на 3 и 9 ]
[ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Автор: Фомин Д.

Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?

Прислать комментарий     Решение

Задача 103889

Темы:   [ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8

Чтобы открыть сейф, нужно ввести код  – число, состоящее из семи цифр: двоек и троек. Сейф откроется, если двоек больше, чем троек, а код делится и на 3, и на 4. Придумайте код, открывающий сейф.

Прислать комментарий     Решение

Задача 60662

Темы:   [ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что числа от 1 до 2001 включительно нельзя выписать подряд в некотором порядке так, чтобы полученное число было точным кубом.

Прислать комментарий     Решение

Задача 60795

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 7,8,9

Делится ли на 9 число 1234...500? (В записи этого числа подряд выписаны числа от 1 до 500.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 106]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .