ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При разложении чисел A и B в бесконечные десятичные дроби длины минимальных периодов этих дробей равны 6 и 12 соответственно. Чему может быть равна длина минимального периода числа A + B? В выпуклом четырёхугольнике ABCD точки P и Q – середины диагоналей AC и BD соответственно. Прямая PQ пересекает стороны AB и CD в точках N и M соответственно. Докажите, что описанные окружности треугольников ANP , BNQ , CMP и DMQ пересекаются в одной точке. В прямоугольном треугольнике ABC (∠B = 90°) проведена высота BH. Окружность, вписанная в треугольник ABH, касается сторон AB, AH в точках H1, B1 соответственно; окружность, вписанная в треугольник CBH, касается сторон CB, CH в точках H2, B2 соответственно. Пусть O – центр описанной окружности треугольника H1BH2. Докажите, что OB1 = OB2. Докажите, что при повороте на угол
(x cos
В остроугольном треугольнике KLN высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла K пересекает отрезок OH в такой точке M, что OM : MH = 3 : 1. Найдите площадь треугольника KLN, если LN = 4, а разность углов L и N равна 30o.
В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам. Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB. Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены запрещёнными. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний. Точки A', B' и C' – середины сторон соответственно
BC, CA и AB треугольника ABC, а BH – его высота. Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета? Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?
Бумажный прямоугольный треугольник АВС перегнули по прямой так, что вершина С прямого угла совместилась с вершиной В и получился четырёхугольник. В каких отношениях точка пересечения диагоналей четырёхугольника делит эти диагонали? Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи. Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток). Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке; б) если $CN$ – высота, то $ST$ проходит через середину $ML$. Сумма и произведение двух чисто периодических десятичных дробей –
чисто периодические дроби с периодом T. Докажите, что при инверсии окружность, не проходящая через центр инверсии, переходит в окружность, также не проходящую через центр инверсии. Окружность, вписанная в прямоугольный треугольник ABC (∠ABC = 90°), касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0. Числовая последовательность определяется условиями: В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой. Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1352]
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
На столе лежат три красные палочки разной длины, сумма длин которых равняется 30 см, и пять синих палочек разной длины, сумма длин которых тоже равняется 30 см. Можно ли распилить те и другие палочки так, чтобы потом можно было расположить их парами, причём в каждой паре палочки были бы одинаковой длины, но разного цвета?
Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.
Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?
Квадрат на шестиугольники. Разрежьте квадрат на два равных шестиугольника.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 1352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке