ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

   Решение

Задачи

Страница: << 255 256 257 258 259 260 261 >> [Всего задач: 1308]      



Задача 109856

Темы:   [ Замощения костями домино и плитками ]
[ Геометрия на клетчатой бумаге ]
[ Связность. Связные множества ]
[ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

Клетчатый квадрат 100×100 разрезан на доминошки. Двое играют в игру. Каждым ходом игрок склеивает две соседних по стороне клетки, между которыми был проведён разрез. Игрок проигрывает, если после его хода фигура получилась связной, то есть весь квадрат можно поднять со стола, держа его за одну клетку. Кто выиграет при правильной игре – начинающий или его соперник?

Прислать комментарий     Решение

Задача 98090

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Отношение порядка ]
Сложность: 5-
Классы: 10,11

Автор: Анджанс А.

В соревновании участвуют 16 боксёров. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 10 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

Прислать комментарий     Решение

Задача 110090

Темы:   [ Системы точек ]
[ Вспомогательные проекции ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Теория игр (прочее) ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 9,10,11

На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 111837

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Правило произведения ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 5-
Классы: 9,10,11

Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался?

Прислать комментарий     Решение

Задача 73673

Темы:   [ Сочетания и размещения ]
[ Индукция (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
[ Формула включения-исключения ]
[ Производная и кратные корни ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 9,10,11

m и n – натуральные числа,  m < n.  Докажите, что  

Прислать комментарий     Решение

Страница: << 255 256 257 258 259 260 261 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .