ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

   Решение

Задачи

Страница: << 254 255 256 257 258 259 260 >> [Всего задач: 1308]      



Задача 66727

Темы:   [ Деревья ]
[ Ориентированные графы ]
[ Индукция (прочее) ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Дидин М.

В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется сложным, иначе – простым. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал турист. Вася победит, если в какой-то момент Петя не сможет сделать ход. Докажите, что
  а) в простом государстве Петя может играть так, чтобы не проиграть, как бы ни играл Вася;
  б) в сложном государстве Вася может гарантировать себе победу, как бы ни играл Петя.

Прислать комментарий     Решение

Задача 98100

Темы:   [ Индукция (прочее) ]
[ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
[ Отношение порядка ]
Сложность: 4
Классы: 8,9,10

В соревновании участвуют 32 боксёра. Каждый боксёр в течение одного дня может проводить только один бой. Известно, что все боксёры имеют разную силу, и что сильнейший всегда выигрывает. Докажите, что за 15 дней можно определить место каждого боксёра.
(Расписание каждого дня соревнований составляется вечером накануне и в день соревнований не изменяется.)

Прислать комментарий     Решение

Задача 109718

Темы:   [ Взвешивания ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 4
Классы: 8,9,10

Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли, что
m(A) < m(B) < m(C)  (через m(x) обозначена масса гири x). При этом даётся ответ "Да" или "Нет". Можно ли за девять вопросов гарантированно узнать, в каком порядке идут веса гирь?

Прислать комментарий     Решение

Задача 110070

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения. Теорема Виета ]
[ Целочисленные и целозначные многочлены ]
[ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9

Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?

Прислать комментарий     Решение

Задача 78683

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4+
Классы: 9,10,11

Дано натуральное число N. С ним производится следующая операция: каждая цифра этого числа заносится на отдельную карточку (при этом разрешается добавлять или выбрасывать любое число карточек, на которых написана цифра 0), и затем эти карточки разбивают на две кучи. В каждой из них карточки располагаются в произвольном порядке, и полученные два числа складываются. С полученным числом N1 проделывается такая же операция, и т.д. Докажите, что за 15 шагов из N можно получить однозначное число.
Прислать комментарий     Решение


Страница: << 254 255 256 257 258 259 260 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .