ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Вялый М.Н.

Первоначально на доске написано натуральное число A. Разрешается прибавить к нему один из его делителей, отличных от него самого и единицы. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа  A = 4  можно с помощью таких операций прийти к любому наперёд заданному составному числу.

   Решение

Задачи

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 1308]      



Задача 97939

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9

Двое играют на шахматной доске 8×8. Начинающий игру делает первый ход – ставит на доску коня. Затем они по очереди его передвигают (по обычным правилам), при этом нельзя ставить коня на поле, где он уже побывал. Проигравшим считается тот, кому некуда ходить. Кто выигрывает при правильной игре – начинающий или его партнёр?

Прислать комментарий     Решение

Задача 97942

Темы:   [ Выигрышные и проигрышные позиции ]
[ Деление с остатком ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?

Прислать комментарий     Решение

Задача 97999

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Гусаров М.

Какую цифру надо поставить вместо знака "?" в числе 888...88?99...999 (восьмёрка и девятка написаны по 50 раз), чтобы оно делилось на 7?

Прислать комментарий     Решение

Задача 98187

Темы:   [ Теория алгоритмов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Автор: Вялый М.Н.

Первоначально на доске написано натуральное число A. Разрешается прибавить к нему один из его делителей, отличных от него самого и единицы. С полученным числом разрешается проделать аналогичную операцию, и т. д. Докажите, что из числа  A = 4  можно с помощью таких операций прийти к любому наперёд заданному составному числу.

Прислать комментарий     Решение

Задача 98218

Темы:   [ Симметричная стратегия ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Имеется шоколадка с пятью продольными и восемью поперечными углублениями, по которым её можно ломать (всего получается  9·6 = 54  дольки). Играют двое, ходят по очереди. Играющий за свой ход отламывает от шоколадки полоску ширины 1 и съедает её. Другой играющий за свой ход делает то же самое с оставшейся частью, и т. д. Тот, кто разламывает полоску ширины 2 на две полоски ширины 1, съедает одну из них, а другую съедает его партнер. Докажите, что начинающий игру может действовать таким образом, что ему достанется по крайней мере на 6 долек больше, чем второму.

Прислать комментарий     Решение

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .