ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 366]      



Задача 79348

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 8,9,10

Найти все пары целых чисел  (x, y),  удовлетворяющие уравнению   3·2x + 1 = y².

Прислать комментарий     Решение

Задача 79480

Темы:   [ Уравнения в целых числах ]
[ Индукция (прочее) ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 10

Доказать, что любое число 2n, где  n = 3, 4, 5, ...  можно представить в виде  7x² + y²,  где x и y – нечётные числа.

Прислать комментарий     Решение

Задача 98028

Темы:   [ Уравнения в целых числах ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9

Дано натуральное число n. Рассматриваются такие тройки различных натуральных чисел  (a, b, c),  что  a + b + c = n.  Возьмём наибольшую возможную такую систему троек, что никакие две тройки системы не имеют общих элементов. Число троек в этой системе обозначим через K(n). Докажите, что
  а)  K(n) > n/6 – 1;
  б)  K(n) < 2n/9.

Прислать комментарий     Решение

Задача 98236

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

Прислать комментарий     Решение

Задача 98264

Темы:   [ Уравнения в целых числах ]
[ Расстояние между двумя точками. Уравнение сферы ]
[ Рациональные и иррациональные числа ]
[ Сферы (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Рубин А.

Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)

 
Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 366]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .