ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 258]
Известно, что уравнение x4 + ax³ + 2x² + bx + 1 = 0 имеет действительный корень. Докажите неравенство a² + b² ≥ 8.
В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.
Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство
Докажите, что для x > 0 и натурального n.
У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются товарищами, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|