Страница:
<< 15 16 17 18 19
20 21 >> [Всего задач: 105]
|
|
Сложность: 3+ Классы: 7,8,9
|
Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов
минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.
|
|
Сложность: 4- Классы: 8,9,10
|
Докажите, что при m ≠ n выполняются равенства:
а) (am – 1, an – 1) = a(m, n) – 1 (a > 1);
б) (fn, fm) = 1, где
fk = 22k + 1 – числа Ферма.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Докажите неравенство для положительных значений переменных:
a³b + b³c + c³a ≥ abc(a + b + c).
Докажите, что существует бесконечно много таких троек чисел n – 1, n, n + 1, что:
a) n представимо в виде суммы двух квадратов натуральных (целых
положительных) чисел, а n – 1 и n + 1 – нет;
б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.
|
|
Сложность: 4- Классы: 9,10,11
|
Назовём тройку натуральных чисел (a, b, c) квадратной, если они образуют арифметическую прогрессию (именно в таком порядке), число b взаимно просто с каждым из чисел a и c, а число abc является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка (c, b, a) новой тройкой не считается.)
Страница:
<< 15 16 17 18 19
20 21 >> [Всего задач: 105]