ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Даны точки  A(x1, y1),  B(x2, y2)  и неотрицательное число λ. Найдите координаты точки M луча AB, для которой  AM : AB = λ.

Вниз   Решение


Докажите, что числа    а)  232001 + 1;     б)  232001 – 1   – составные.

ВверхВниз   Решение


На одной из двух данных пересекающихся сфер взяты точки A и B, на другой – C и D. Отрезок AC проходит через общую точку сфер. Отрезок BD проходит через другую общую точку сфер и параллелен прямой, содержащей центры сфер. Докажите, что проекции отрезков AB и CD на прямую AC равны.

ВверхВниз   Решение


Найдите наибольшее значение функции y = ln (x+5)3-3x на отрезке [-4,5;0] .

ВверхВниз   Решение


Докажите, что инверсия с центром в вершине A равнобедренного треугольника ABC (AB = AC) и степенью AB2 переводит основание BC треугольника в дугу BC описанной окружности.

ВверхВниз   Решение


Точка Х расположена на диаметре АВ окружности радиуса R. Точки K и N лежат на окружности в одной полуплоскости относительно АВ,
а  ∠KXA = ∠NXB = 60°.  Найдите длину отрезка KN.

ВверхВниз   Решение


Стороны треугольника относятся как  5 : 4 : 3.  Найдите отношения отрезков сторон, на которые они делятся точками касания с вписанной окружностью.

ВверхВниз   Решение


Пусть  1 + x + x² + ... + xn–1 = F(x)G(x),  где F и G – многочлены, коэффициенты которых – нули и единицы  (n > 1).
Докажите, что один из многочленов F, G представим в виде  (1 + x + x² + ... + xk–1)T(x),  где T(x) – также многочлен с коэффициентами 0 и 1  (k > 1).

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52]      



Задача 67318

Темы:   [ Свойства коэффициентов многочлена ]
[ Индукция (прочее) ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Шатунов Л.

Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2.
Прислать комментарий     Решение


Задача 111813

Темы:   [ Свойства коэффициентов многочлена ]
[ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4+
Классы: 9,10,11

Даны положительные рациональные числа a, b. Один из корней трёхчлена  x² – ax + b  – рациональное число, в несократимой записи имеющее вид  m/n.  Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.

Прислать комментарий     Решение

Задача 115404

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен  (ax + b)1000 – (cx + d)1000  после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов.

Прислать комментарий     Решение

Задача 67434

Темы:   [ Свойства коэффициентов многочлена ]
[ Теория чисел. Делимость (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Шатунов Л.

Дан многочлен степени $n$ > 0 с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что у этого многочлена не может быть никаких других коэффициентов, кроме 1, –1 и –2.
Прислать комментарий     Решение


Задача 98355

Темы:   [ Свойства коэффициентов многочлена ]
[ Принцип крайнего (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Системы отрезков, прямых и окружностей ]
[ Геометрические интерпретации в алгебре ]
Сложность: 5-
Классы: 9,10

Пусть  1 + x + x² + ... + xn–1 = F(x)G(x),  где F и G – многочлены, коэффициенты которых – нули и единицы  (n > 1).
Докажите, что один из многочленов F, G представим в виде  (1 + x + x² + ... + xk–1)T(x),  где T(x) – также многочлен с коэффициентами 0 и 1  (k > 1).

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .