ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Первоначально на каждом поле доски 1×n стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за  n – 1  ход можно собрать все шашки на одной клетке.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1311]      



Задача 98363

Темы:   [ Теория алгоритмов (прочее) ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 6,7,8

Первоначально на каждом поле доски 1×n стоит шашка. Первым ходом разрешается переставить любую шашку на соседнюю клетку (одну из двух, если шашка не с краю), так что образуется столбик из двух шашек. Далее очередным ходом каждый столбик можно передвинуть в любую сторону на столько клеток, сколько в нём шашек (в пределах доски); если столбик попал на непустую клетку, он ставится на стоящий там столбик и объединяется с ним. Докажите, что за  n – 1  ход можно собрать все шашки на одной клетке.

Прислать комментарий     Решение

Задача 98403

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8,9

12 кандидатов в мэры рассказывали о себе. Через некоторое время один сказал: "До меня соврали один раз". Другой сказал: "А теперь – дважды". – "А теперь – трижды", – сказал третий, и так далее до 12-го, который сказал: "А теперь соврали 12 раз". Тут ведущий прервал дискуссию. Оказалось, что по крайней мере один кандидат правильно подсчитал, сколько раз соврали до него. Так сколько же раз всего соврали кандидаты?

Прислать комментарий     Решение

Задача 98629

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7

Про грибы.В корзине лежат 30 грибов. Среди любых 12 из них имеется хотя бы один рыжик, а среди любых 20 грибов — хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?
Прислать комментарий     Решение


Задача 98639

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 5,6,7

Снегирь. Итак, мама воскликнула — «Чудеса!», и сразу же мама, папа и дети отправились в зоомагазин. «Но здесь больше пятидесяти снегирей, как мы выберем», — чуть не заплакал младший брат, увидев снегирей. «Не волнуйся», — сказал старший, — «их меньше пятидесяти». «Главное,» — сказала мама, — «что здесь есть хотя бы один!» «Да, забавно,» — подытожил папа, — «из трех ваших фраз только одна соответствует действительности». Сможете ли Вы сказать, сколько снегирей было в магазине, зная, что снегиря мне купили?
Прислать комментарий     Решение


Задача 98665

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 5,6

Встретились несколько аборигенов (каждый — либо лжец, либо — рыцарь), и каждый заявил всем остальным: «Вы все — лжецы». Сколько рыцарей было среди них?
Прислать комментарий     Решение


Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .