Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 98]
Автобусная сеть города устроена следующим образом:
1) с каждой остановки на любую другую остановку можно попасть без пересадки;
2) для каждой пары маршрутов найдётся, и притом единственная, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
3) на каждом маршруте ровно три остановки.
Сколько автобусных маршрутов в городе? (Известно, что их больше одного.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Берутся всевозможные непустые подмножества из множества чисел
1, 2, 3, ..., n. Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.
Рассматривается доска 8×8, клетки которой пока не окрашены. Сколькими способами можно раскрасить доску в чёрный и белый цвета так, чтобы чёрных клеток было 31 и никакие две чёрные клетки не имели общей стороны? (Два способа раскраски считаются различными, если найдётся клетка, которая при одном из этих способах раскраски белая, а при другом – чёрная.)
|
|
Сложность: 3+ Классы: 9,10,11
|
В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?
|
|
Сложность: 3+ Классы: 8,9,10
|
Последовательность натуральных чисел a1 < a2 < a3 < ... < an < ... такова, что каждое натуральное число либо входит в последовательность, либо представимо в виде суммы двух членов последовательности, быть может, одинаковых. Докажите, что an ≤ n² для любого n = 1, 2, 3, ...
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 98]