Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 603]
|
|
Сложность: 4- Классы: 9,10,11
|
У одного островного племени есть обычай – во время ритуального танца шаман подбрасывает высоко вверх три тонких прямых прута одинаковой длины, связанных в подобие буквы П. Соседние прутья связаны короткой ниткой и поэтому свободно вращаются друг относительно друга. Прутья падают на песок, образуя случайную фигуру. Если получается самопересечение (первый и третий прутья перекрещиваются), то племя в наступающем году ждут неурожаи и всякие неприятности. Если же самопересечения нет, то год будет удачным – сытным и счастливым. Найдите вероятность того, что на 2017 год прутья напророчат удачу.
Описанная окружность треугольника ABC пересекает стороны AD и CD параллелограмма ABCD в точках K и L. Пусть M – середина дуги KL, не содержащей точку B. Докажите, что DM ⊥ AC.
На плоскости отмечены несколько (больше трёх) точек. Известно, что если выкинуть любую точку, то оставшиеся будут симметричны относительно какой-нибудь прямой. Верно ли, что все множество точек тоже симметрично относительно какой-нибудь прямой?
Правильный (2n+1)-угольник разбили диагоналями на 2n – 1 треугольник. Докажите, что среди них по крайней мере три равнобедренных.
|
|
Сложность: 4- Классы: 7,8,9
|
Расположите на плоскости как можно больше точек так, чтобы любые три точки не лежали на одной прямой и являлись вершинами равнобедренного треугольника.
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 603]