|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны 1985 множеств, каждое из которых состоит из 45 элементов, причём
объединение любых двух множеств содержит ровно 89 элементов. Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны. Точка D лежит на основании AC равнобедренного треугольника ABC. Докажите, что радиусы описанных окружностей треугольников ABD и CBD равны. В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно. |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 324]
Замечание. Считается, что дачные участки расположены в одну линию.
В четырёхугольнике ABCD AB = BC = CD = 1, AD не равно 1. Положение точек B и C фиксировано, точки же A и D подвергаются преобразованиям, сохраняющим длины отрезков AB, CD и AD. Новое положение точки A получается из старого зеркальным отражением в отрезке BD, новое положение точки D получается из старого зеркальным отражением в отрезке AC (где A уже новое), затем на втором шагу опять A отражается относительно BD (D уже новое), затем снова преобразуется D, затем аналогично проводится третий шаг, и так далее. Докажите, что на каком-то шагу положение точек совпадает с первоначальным.
За круглым столом были приготовлены 12 мест для жюри с указанием имени на каждом месте. Николай Николаевич, пришедший первым, по рассеянности сел не на своё, а на следующее по часовой стрелке место. Каждый член жюри, подходивший к столу после этого, занимал своё место или, если оно уже было занято, шёл вокруг стола по часовой стрелке и садился на первое свободное место. Возникшее расположение членов жюри зависит от того, в каком порядке они подходили к столу. Сколько может возникнуть различных способов рассадки жюри?
В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.
В таблице размера n×n клеток: две противоположные угловые клетки – чёрные, а остальные – белые. Какое наименьшее количество белых клеток достаточно перекрасить в чёрный цвет, чтобы после этого с помощью преобразований, состоящих в перекрашивании всех клеток какого-либо столбца или какой-либо строки в противоположный цвет, можно было сделать чёрными все клетки таблицы?
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 324] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|