Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 73]
Около окружности описан многоугольник. Точки касания его сторон с окружностью служат вершинами второго, вписанного в эту окружность многоугольника. Докажите, что произведение расстояний от произвольной точки M окружности до сторон (или их продолжений) одного многоугольника равно произведению расстояний от этой точки до сторон (или их продолжений) второго.
n красных и n синих точек, строго чередуясь, разделили окружность на 2n дуг так, что каждые две смежные из них имеют различную
длину. При этом длины каждой из этих дуг равны одному из трёх чисел: a, b или c. Докажите, что n-угольник с красными вершинами и n-угольник с синими вершинами имеют равные периметры и равные площади.
Вершины 50-угольника делят окружность на 50 дуг, длины которых – 1, 2, 3, ..., 50 в некотором порядке. Известно, что каждая пара "противоположных" дуг (соответствующих противоположным сторонам 50-угольника) отличается по длине на 25. Докажите, что у 50-угольника найдутся две параллельные стороны.
Из точки O, лежащей внутри выпуклого n-угольника A1A2...An, проведены отрезки ко всем вершинам: OA1, OA2, ..., OAn . Оказалось, что все углы между этими отрезками и прилегающими к ним сторонами n-угольника – острые, причём
∠OA1An ≤ ∠OA1A2, ∠OA2A1 ≤ ∠OA2A3, ...,
∠OAn–1An–2 ≤ ∠OAn–1An, ∠OAnAn–1 ≤ ∠OAnA1. Докажите, что O – центр окружности, вписанной в n-угольник.
Точка, лежащая внутри описанного
n-угольника,
соединена отрезками со всеми вершинами и точками касания.
Образовавшиеся при этом треугольники попеременно окрашены
в красный и синий цвет. Докажите, что произведение площадей красных
треугольников равно произведению площадей синих треугольников.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 73]