Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

Вниз   Решение


В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

ВверхВниз   Решение


Две окружности радиусов 1 и пересекаются в точке A. Расстояние между центрами окружностей равно 2. Хорда AC большей окружности пересекает меньшую окружность в точке B и делится этой точкой пополам. Найдите эту хорду.

ВверхВниз   Решение


На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 222]      



Задача 78622

Тема:   [ Подсчет двумя способами ]
Сложность: 3+
Классы: 9,10

Семь школьников решили за воскресенье обойти семь кинотеатров. Во всех них сеансы начинаются в 9.00, 10.40, 12.20, 14.00, 15.40, 17.20, 19.00 и 20.40 (8 сеансов). На каждый сеанс шестеро шли вместе, а кто-нибудь один (не обязательно один и тот же) шел в другой кинотеатр. К вечеру каждый побывал в каждом кинотеатре. Докажите, что в каждом кинотеатре был сеанс, на котором не был ни один из этих школьников.
Прислать комментарий     Решение


Задача 98647

Темы:   [ Подсчет двумя способами ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?
Прислать комментарий     Решение


Задача 111795

Темы:   [ Подсчет двумя способами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
Прислать комментарий     Решение


Задача 64317

Темы:   [ Подсчет двумя способами ]
[ Необычные конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 6,7

Сеть автобусных маршрутов в пригороде Амстердама устроена так, что:
  а) на каждом маршруте есть ровно три остановки;
  б) каждые два маршрута либо вовсе не имеют общих остановок, либо имеют только одну общую остановку.
Какое наибольшее количество маршрутов может быть в этом пригороде, если в нём всего 9 остановок?

Прислать комментарий     Решение

Задача 64352

Темы:   [ Подсчет двумя способами ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 9,10,11

На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол k/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг.
Докажите, что найдётся новая дуга, которая целиком лежит в одной из старых дуг. (Считается, что концы дуги ей принадлежат.)

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .