Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что площадь четырехугольника, образованного серединами сторон выпуклого четырехугольника ABCD, равна половине площади ABCD.
б) Докажите, что если диагонали выпуклого четырехугольника равны, то его площадь равна произведению длин отрезков, соединяющих середины противоположных сторон.

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 499]      



Задача 76469

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 10,11

Найти все трёхзначные числа, равные сумме факториалов своих цифр.

Прислать комментарий     Решение

Задача 77959

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 9,10

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.

Прислать комментарий     Решение

Задача 78235

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

6n-значное число делится на 7. Последнюю цифру перенесли в начало. Доказать, что полученное число также делится на 7.

Прислать комментарий     Решение

Задача 78617

Темы:   [ Десятичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,  

Прислать комментарий     Решение

Задача 78692

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .