Страница:
<< 29 30 31 32 33 34
35 >> [Всего задач: 171]
|
|
Сложность: 4 Классы: 8,9,10,11
|
В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)
|
|
Сложность: 4+ Классы: 8,9,10
|
Произведение некоторых 48 натуральных чисел имеет ровно 10 различных простых
делителей.
Докажите, что произведение некоторых четырёх из этих чисел является
квадратом натурального числа.
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве заданы четыре точки, не лежащие в одной плоскости.
Сколько существует различных параллелепипедов, для которых эти точки служат вершинами?
|
|
Сложность: 5 Классы: 10,11
|
Перед Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что
a) синий кубик только один;
б) синих кубиков ровно n.
(Алёша может поставить и 0, то есть просто бесплатно открыть коробочку и увидеть цвет кубика.)
|
|
Сложность: 5 Классы: 9,10,11
|
Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что an = a и ai+1 = ai – S(ai) при всех i = 0, 1, ..., n – 1. Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим?
Страница:
<< 29 30 31 32 33 34
35 >> [Всего задач: 171]