Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

На боковых сторонах AB и AC равнобедренного треугольника ABC отмечены точки P и Q так, что  ∠PXB = ∠QXC,  где X – середина основания BC.
Докажите, что  BQ = CP.

Вниз   Решение


Две окружности касаются внешним образом. Прямая, проведённая через точку касания, образует в окружностях хорды, одна из которых равна 13/5 другой. Найдите радиусы окружностей, если расстояние между центрами равно 36.

ВверхВниз   Решение


В равнобедренном треугольнике ABC сторона  AC = b,  стороны  BA = BC = aAM и CN – биссектрисы углов A и C. Найдите MN.

ВверхВниз   Решение


Докажите, что значение любой периодической цепной дроби – квадратичная иррациональность.

ВверхВниз   Решение


Автор: Фольклор

Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл?

ВверхВниз   Решение


Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.

ВверхВниз   Решение


Используя в качестве чисел любое количество монет достоинством 1, 2, 5 и 10 рублей, а также (бесплатные) скобки и знаки четырех арифметических действий, составьте выражение со значением 2009, потратив как можно меньше денег.

ВверхВниз   Решение


Фабрика игрушек выпускает проволочные кубики, в вершинах которых расположены маленькие разноцветные шарики. По ГОСТу в каждом кубике должны быть использованы шарики всех восьми цветов (белого и семи цветов радуги). Сколько разных моделей кубиков может выпускать фабрика?

ВверхВниз   Решение


AD – биссектриса треугольника ABC. Точка M лежит на стороне AB, причём  AM = MD.  Докажите, что  MD || AC.

ВверхВниз   Решение


Пусть     Чему равны Pn и Qn?

ВверхВниз   Решение


AA1 и CC1 – высоты остроугольного треугольника ABC . Прямая, проходящая через центры вписанных окружностей треугольников AA1C и CC1A пересекает стороны AB и BC треугольника ABC в точках X и Y . Докажите, что BX=BY .

ВверхВниз   Решение


В треугольнике ABC сторона  AB = 15  и  AC = 10,  AD – биссектриса угла A. Из точки D проведена прямая, параллельная AB, до пересечения с AC в точке E. Найдите AE, EC и DE.

ВверхВниз   Решение


Найдите острые углы прямоугольного треугольника, если медиана, проведённая к его гипотенузе, делит прямой угол в отношении  1 : 2.

ВверхВниз   Решение


Докажите равенство треугольников по углу, биссектрисе и стороне, исходящим из вершины этого угла.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 171]      



Задача 30748

Темы:   [ Сочетания и размещения ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
Сложность: 2+
Классы: 7,8

Найдите число прямоугольников, составленных из клеток доски с m горизонталями и n вертикалями, которые содержат клетку с координатами  (p, q).

Прислать комментарий     Решение

Задача 34862

Темы:   [ Сочетания и размещения ]
[ Теория графов (прочее) ]
Сложность: 2+
Классы: 8,9,10

В парламенте 30 депутатов. Каждые два из них либо дружат, либо враждуют, причём каждый дружит ровно с шестью другими. Каждые три депутата образуют комиссию. Найдите общее число комиссий, в которых все три члена попарно дружат или все трое попарно враждуют.

Прислать комментарий     Решение

Задача 60378

Тема:   [ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8,9

Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?

Прислать комментарий     Решение

Задача 60382

Темы:   [ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

Прислать комментарий     Решение

Задача 60385

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 8

У Нины 7 разных шоколадных конфет, у Коли 9 разных карамелек. Сколькими способами они могут обменяться друг с другом пятью конфетами?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .