ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 61051

Темы:   [ Многочлен n-й степени имеет не более n корней ]
[ Интерполяционный многочлен Лагранжа ]
Сложность: 3
Классы: 9,10

Опишите явный вид многочлена  f(x) = f1(x) + f2(x) + ... + fn(x),  где  fi(x) – многочлены из задачи 61050.

Прислать комментарий     Решение

Задача 61053

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Интерполяционный многочлен Лагранжа ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Пусть A, B и C – остатки от деления многочлена P(x) на  x – a,  x – b  и  x – c.
Найдите остаток от деления того же многочлена на произведение  (x – a)(x – b)(x – c).

Прислать комментарий     Решение

Задача 61063

Темы:   [ Рациональные функции (прочее) ]
[ Интерполяционный многочлен Лагранжа ]
Сложность: 4-
Классы: 8,9,10,11

Докажите, что если  f(x) – многочлен, степень которого меньше n, то дробь     (x1, x2, ..., xn  – произвольные попарно различные числа) может быть представлена в виде суммы n простейших дробей:  
где  A1, A2, ..., An  – некоторые константы.

Прислать комментарий     Решение

Задача 61451

Темы:   [ Целочисленные и целозначные многочлены ]
[ Интерполяционный многочлен Ньютона ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Докажите, что если многочлен  f(x) степени n принимает целые значения в точках  x = 0, 1, ..., n,  то он принимает целые значения во всех целых точках.

Прислать комментарий     Решение

Задача 116008

Темы:   [ Делимость чисел. Общие свойства ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Интерполяционный многочлен Лагранжа ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что  f(n) – Qp(n)  делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что  g(n) = f(n)  для любого целого n?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .