ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 414]      



Задача 78470

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 7,8

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Прислать комментарий     Решение

Задача 86514

Темы:   [ Разложение на множители ]
[ Графики и ГМТ на координатной плоскости ]
[ Уравнения с модулями ]
Сложность: 2+
Классы: 8,9

На координатной плоскости изобразите все точки, координаты которых являются решениями уравнения:  y² – |y| = x² – |x|.

Прислать комментарий     Решение

Задача 98313

Темы:   [ Тождественные преобразования ]
[ Уравнения в целых числах ]
Сложность: 2+
Классы: 6,7,8

Автор: Фольклор

Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел?

Прислать комментарий     Решение

Задача 34966

Темы:   [ Формулы сокращенного умножения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9

Дано число 100...01, число нулей в нем равно 299. Докажите, что это число составное.
Прислать комментарий     Решение


Задача 30595

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 7,8,9

Докажите, что
  а)  43101 + 23101  делится на 66.
  б)  an + bn  делится на  a + b,  если n – нечётное число.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 414]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .