Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 155]
В прямоугольной таблице NxM в начале игрок находится в левой верхней клетке.
За один ход ему разрешается перемещаться в соседнюю клетку
либо вправо, либо вниз (влево и вверх перемещаться запрещено).
Посчитайте, сколько есть способов у игрока попасть в правую
нижнюю клетку.
Входные данные
Во входном файле задано два числа N и M - размеры таблицы (1<=N<=10,
1<=M<=10).
Выходные данные
В выходной файл запишите искомое число способов.
Примечание
При указанных ограничениях, число способов входит в тип Longint.
Пример входного файла
2 3
Пример выходного файла
3
Пояснение
Если у нас есть таблица из 2 строк и 3 столбцов, то существуют следующие
способы попасть из левого верхнего угла в правый нижний:
1) вниз, вправо, вправо
2) вправо, вниз, вправо
3) вправо, вправо, вниз
Еще один пример входного файла
3 3
Пример выходного файла
6
В прямоугольной таблице NxM (в каждой клетке которой записано
некоторое число) в начале игрок находится в левой верхней клетке.
За один ход ему разрешается перемещаться в соседнюю клетку
либо вправо, либо вниз (влево и вверх перемещаться запрещено).
При проходе через клетку с игрока берут столько у.е., какое число
записано в этой клетке (деньги берут также за первую
и последнюю клетки его пути).
Требуется найти минимальную сумму у.е., заплатив которую игрок может
попасть в правый нижний угол.
Входные данные
Во входном файле задано два числа N и M - размеры таблицы (1<=N<=20,
1<=M<=20). Затем идет N строк по M чисел в каждой - размеры штрафов
в у.е. за прохождение через соответствующие клетки (числа от 0 до 100).
Выходные данные
В выходной файл запишите минимальную сумму, потратив которую можно попасть
в правый нижний угол.
Пример входного файла
3 4
1 1 1 1
5 2 2 100
9 4 2 1
Пример выходного файла
8
Длина пути
В неориентированном графе требуется найти длину минимального пути между
двумя вершинами. Гарантируется, что путь существует.
Входные данные
Во входном файле записано сначала число N - количество вершин в графе
(1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра,
1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной.
Выходные данные
В выходной файл выведите одно число - длину пути (количество ребер, которые
нужно пройти).
Пример входного файла
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
3 5
Пример выходного файла
3
Длина пути - 2
(Такая же задача, как длина пути, но путь может не существовать).
В неориентированном графе требуется найти длину минимального пути между
двумя вершинами.
Входные данные
Во входном файле записано сначала число N - количество вершин в графе
(1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра,
1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной.
Выходные данные
В выходной файл выведите одно число - длину пути (количество ребер, которые
нужно пройти).
Если пути не существует, выведите одно число -1.
Пример входного файла
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
4 5
Пример выходного файла
-1
Путь
В неориентированном графе требуется найти минимальный путь между
двумя вершинами.
Входные данные
Во входном файле записано сначала число N - количество вершин в графе
(1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра,
1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной.
Выходные данные
В выходной файл выведите сначала L - длину пути (количество ребер, которые
нужно пройти). А затем выведите L+1 число - вершины в порядке следования
вдоль этого пути.
Если пути не существует, выведите одно число -1.
Пример входного файла
5
0 1 0 0 1
1 0 1 0 0
0 1 0 0 0
0 0 0 0 0
1 0 0 0 0
3 5
Пример выходного файла
3
3 2 1 5
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 155]