Страница: << 7 8 9 10 11 12 13 [Всего задач: 63]
|
|
Сложность: 4- Классы: 10,11
|
Разрезать отрезок [–1, 1] на чёрные и белые отрезки так, чтобы интегралы от любой а) линейной функции; б) квадратного трёхчлена по белым и чёрным отрезкам были равны.
|
|
Сложность: 4+ Классы: 10,11
|
Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))?
|
|
Сложность: 4+ Классы: 10,11
|
Обозначим через [n]! произведение 1·11·111·...·11...11 – всего n сомножителей, в последнем – n единиц.
Докажите, что [n + m]! делится на произведение [n]!·[m]!.
Страница: << 7 8 9 10 11 12 13 [Всего задач: 63]