ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Жюри составило отчет об учебно-тренировочных сборах по информатике и собирается распечатать его на стандартном листе бумаги. Весь отчет набран одним моноширинным шрифтом, т.е. все символы (включая пробелы) имеют одинаковую ширину. Длина строки при печати этим шрифтом на листе бумаги равна S.

Назовем пустотой последовательность пробелов между соседними словами в строке, а также от начала строки до первого слова в ней и от последнего слова в строке до конца строки. Проблема, стоящая перед жюри, состоит в том, что научный руководитель сборов Владимир Михайлович Кирюхин отказывается читать текст, если сумма кубов длин пустот по всем строкам не минимальна. Помогите жюри расположить отчет на листе бумаги так, чтобы В.М. Кирюхин согласился его прочесть и утвердить результаты сборов. 

Для достижения требуемого расположения текста на бумаге разрешается заменять произвольную пробельную последовательность (т.е. непустую последовательность подряд идущих пробелов и/или символов перевода строки) любой другой пробельной последовательностью.

Входные данные

Первая строка входного файла содержит целое число S (1 ≤ S ≤ 80). В последующих строках записан отчет, содержащий не более 500 слов. Длина каждой строки отчета не превосходит 250 символов, а длина каждого слова не превосходит S.

Выходные данные

Вывести в первую строку выходного файла минимально возможную сумму кубов пустот по всем строкам. В последующие строки следует вывести искомое расположение текста на листе бумаги.

Пример входного файла

30
Победители летних учебно-тренировочных сборов по
информатике 1997 г.:
Владимир Мартьянов,
Анатолий Пономарев,
Николай Дуров, Андрей Лопатин.

Пример выходного файла

325
    Победители     летних
учебно-тренировочных сборов по
 информатике 1997 г.: Владимир
Мартьянов, Анатолий Пономарев,
Николай Дуров, Андрей Лопатин.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 61063

Темы:   [ Рациональные функции (прочее) ]
[ Интерполяционный многочлен Лагранжа ]
Сложность: 4-
Классы: 8,9,10,11

Докажите, что если  f(x) – многочлен, степень которого меньше n, то дробь     (x1, x2, ..., xn  – произвольные попарно различные числа) может быть представлена в виде суммы n простейших дробей:  
где  A1, A2, ..., An  – некоторые константы.

Прислать комментарий     Решение

Задача 98505

Темы:   [ Рациональные функции (прочее) ]
[ Четность и нечетность ]
[ Монотонность, ограниченность ]
Сложность: 4-
Классы: 10,11

Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

Прислать комментарий     Решение

Задача 61292

Темы:   [ Рациональные функции (прочее) ]
[ Тригонометрические замены ]
Сложность: 4
Классы: 9,10,11

Пусть xy + yz + xz = 1. Докажите равенство:

$\displaystyle {\dfrac{x}{1-x^2}}$ + $\displaystyle {\dfrac{y}{1-y^2}}$ + $\displaystyle {\dfrac{z}{1-z^2}}$ = $\displaystyle {\dfrac{4xyz}{(1-x^2)(1-y^2)(1-z^2)}}$.


Прислать комментарий     Решение

Задача 73719

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Рациональные функции (прочее) ]
Сложность: 4-
Классы: 9,10,11

Докажите, что для любого натурального числа n  

Прислать комментарий     Решение

Задача 61064

Темы:   [ Системы линейных уравнений ]
[ Теорема Безу. Разложение на множители ]
[ Рациональные функции (прочее) ]
Сложность: 5
Классы: 10,11

Решите систему

   

(a1, ..., an, b1, ..., bn – различные числа.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .