Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 80]      



Задача 86514

Темы:   [ Разложение на множители ]
[ Графики и ГМТ на координатной плоскости ]
[ Уравнения с модулями ]
Сложность: 2+
Классы: 8,9

На координатной плоскости изобразите все точки, координаты которых являются решениями уравнения:  y² – |y| = x² – |x|.

Прислать комментарий     Решение

Задача 104096

Темы:   [ Текстовые задачи (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 7,8,9

Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта.
Может ли температура выражаться одинаковым числом градусов как по Цельсию, так и по Фаренгейту?

Прислать комментарий     Решение

Задача 66484

Темы:   [ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 8,9,10,11

Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?
Прислать комментарий     Решение


Задача 66858

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Графики и ГМТ на координатной плоскости ]
[ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 8,9,10,11

На плоскости даны две параболы:  y=x2  и  y=x21.  Пусть U – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более 106, целиком содержащийся в U?

Прислать комментарий     Решение

Задача 67195

Темы:   [ Тригонометрия (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
[ Производная и касательная ]
Сложность: 3
Классы: 10,11

К графикам функций y=cosx и y=atanx провели касательные в некоторой точке их пересечения. Докажите, что эти касательные перпендикулярны друг другу для любого a0.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .