Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 47]
|
|
Сложность: 4- Классы: 9,10,11
|
Постройте образ квадрата с вершинами A(0, 0), B(0, 2), C(2, 2), D(2, 0) при следующих преобразованиях:
а) w = iz; б) w = 2iz – 1; в) w = z²; г) w = z–1.
|
|
Сложность: 4- Классы: 9,10,11
|
Куда переходит полоса 2 < Re z < 3 при отображениях:
а) w = z–1; б) w = (z – 2)–1; в) w = (z – 5/2)–1?
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что произвольное дробно-линейное отображение вида
с δ = ad – bc ≠ 0 может быть получено композицией параллельных переносов и отображения вида w = R/z.
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что уравнение Azz + Bz – B z + C = 0 при отображениях w = z + u и w = R/z переходит в уравнение такого же вида. Получите из этого круговое свойство дробно-линейных отображений (см. задачу 61183).
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что cтепень точки w относительно окружности Azz + Bz – B z + C = 0 равна
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 47]