Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 137]
Сторона клетки клетчатой бумаги равна 1. По линиям сетки построен прямоугольник со сторонами m и n. Можно ли в прямоугольнике провести по линиям сетки замкнутую ломаную, которая ровно один раз проходила бы через каждый узел сетки, расположенный внутри или на границе прямоугольника? Если можно, то какова её длина?
|
|
Сложность: 3+ Классы: 6,7,8
|
Закрасьте в квадрате 9×9 несколько клеток так, чтобы из центра
квадрата не были видны его стороны (то есть любой луч, выходящий из центра,
задевал какую-нибудь закрашенную клетку хотя бы по углу).
Нельзя закрашивать клетки, соседние по стороне или углу, а также
центральную клетку.
|
|
Сложность: 3+ Классы: 9,10,11
|
Боковая поверхность прямоугольного параллелепипеда с основанием a×b и высотой c (a, b и c – натуральные числа) оклеена по клеточкам без наложений и пропусков прямоугольниками со сторонами, параллельными рёбрам параллелепипеда, каждый из которых состоит из чётного числа единичных квадратов. При этом разрешается перегибать прямоугольники через боковые ребра параллелепипеда. Докажите, что если c нечётно, то число способов оклейки чётно.
Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая несамопересекающаяся ломаная. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченном ею многоугольнике общая площадь чёрных частей равна общей площади белых частей.
|
|
Сложность: 3+ Классы: 8,9,10
|
В клетчатом квадрате
10×10 отмечены центры всех единичных квадратиков
(всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам
квадрата,
нужно провести, чтобы вычеркнуть все отмеченные точки?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 137]