Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 140]      



Задача 109583

Темы:   [ Геометрия на клетчатой бумаге ]
[ Деление с остатком ]
[ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 7,8,9

Прямоугольник m×n разрезан на уголки:

Докажите, что разность между количеством уголков вида a и количеством уголков вида b делится на 3.

Прислать комментарий     Решение

Задача 111652

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 4-
Классы: 10,11

На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.

Прислать комментарий     Решение

Задача 111881

Темы:   [ Геометрия на клетчатой бумаге ]
[ Шахматные доски и шахматные фигуры ]
[ Наибольшая или наименьшая длина ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9,10

Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?

Прислать комментарий     Решение

Задача 111908

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теория алгоритмов (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10

В каждой клетке квадрата 101×101, кроме центральной, стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает извне в произвольную клетку на границе квадрата, после чего ездит параллельно сторонам клеток, придерживаясь двух правил:
  1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
  2) в клетке со знаком "поворот" она поворачивает на 90° (в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?

Прислать комментарий     Решение

Задача 116773

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 4-
Классы: 10,11

Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть l – прямая, не параллельная сторонам клеток. Для каждого отрезка I, параллельного l, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число C (зависящее только от прямой l) такое, что все полученные разности не превосходят C.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 140]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .