ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 424]      



Задача 107846

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Прислать комментарий     Решение

Задача 109158

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3+
Классы: 10,11

Делится ли многочлен  1 + x4 + x8 + ... + x4k  на многочлен  1 + x² + x4 + ... + x2k?

Прислать комментарий     Решение

Задача 116209

Темы:   [ Делимость чисел. Общие свойства ]
[ Текстовые задачи (прочее) ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Пётр родился в XIX веке, а его брат Павел – в XX веке. Однажды братья встретились на праздновании своего общего дня рождения. Пётр сказал: "Мой возраст равен сумме цифр года моего рождения". – "Мой тоже", – ответил Павел. На сколько лет Павел младше Петра?

Прислать комментарий     Решение

Задача 116742

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Натуральные числа а, b, c и d таковы, что  ab = cd.  Может ли число  a + b + c + d  оказаться простым?

Прислать комментарий     Решение

Задача 66521

Темы:   [ Делимость чисел. Общие свойства ]
[ Логика и теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 3+
Классы: 6,7,8

На доске написаны числа 2, 3, 4, ..., 29, 30. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 424]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .