ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 418]      



Задача 78294

Темы:   [ Делимость чисел. Общие свойства ]
[ Комбинаторика орбит ]
[ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10

В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол  α ≠ 2π   совмещается сам с собой. Доказать, что n – число составное.

Прислать комментарий     Решение

Задача 79268

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

Прислать комментарий     Решение

Задача 34865

Темы:   [ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 4-

Во всех клетках таблицы 20×20 расставлены плюсы. Разрешается менять знак одновременно во всех клетках строки или столбца.
Можно ли, пользуясь этими операциями, получить ровно 199 минусов?

Прислать комментарий     Решение

Задача 34997

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 4-
Классы: 7,8,9,10

Натуральные числа a, b, c и d удовлетворяют равенству  ab = cd.  Докажите, что число  a2000 + b2000 + c2000 + d2000  составное.

Прислать комментарий     Решение

Задача 64627

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 418]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .