ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 367]      



Задача 31240

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  4343 + 1717  делится на 10.

Прислать комментарий     Решение

Задача 31245

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 6,7,8

Доказать, что для любого n
  а)  72n – 42n  делится на 33;
  б)  36n – 26n  делится на 35.

Прислать комментарий     Решение

Задача 31261

Темы:   [ Арифметика остатков (прочее) ]
[ Китайская теорема об остатках ]
Сложность: 3
Классы: 6,7,8

a ≡ 68 (mod 1967),   a ≡ 69 (mod 1968).  Найти остаток от деления a на 14.

Прислать комментарий     Решение

Задача 31263

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

Доказать, что  3n + 1  не делится на 10100.

Прислать комментарий     Решение

Задача 31265

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 6,7,8

m и n взаимно просты, b – произвольное целое число. Доказать, что числа  b,  b + n,  b + 2n,  ...,  b + (n – 1)n  дают все возможные остатки по модулю m.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .