Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 168]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Известно, что модули всех корней уравнений x² + Ax + B = 0, x² + Cx + D = 0 меньше единицы. Доказать, что модули корней уравнения
x² + ½ (A + C)x + ½ (B + D)x = 0 также меньше единицы. A, B, C, D – действительные числа.
На клетчатой бумаге написана таблица, причём в каждой клетке стоит число,
равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).
Доказать, что если a1 ≤ a2 ≤ a3 ≤ ... ≤ a10, то
1/6 (a1 + ... + a6) ≤ 1/10 (a1 + ... + a10).
|
|
Сложность: 3 Классы: 7,8,9
|
По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)
|
|
Сложность: 3 Классы: 7,8,9
|
На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее
арифметическое и среднее гармоническое. Утром первого дня на доске были написаны
числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го
дня.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 168]