ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 694]      



Задача 30391

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 7,8,9

Найдите последнюю цифру числа 777.

Прислать комментарий     Решение

Задача 30897

Темы:   [ Иррациональные неравенства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9

n – натуральное число. Докажите, что  

Прислать комментарий     Решение

Задача 35588

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Геометрическая прогрессия ]
[ Произведения и факториалы ]
Сложность: 3+
Классы: 8,9,10

Докажите, что n! не делится на 2n.

Прислать комментарий     Решение

Задача 60301

Темы:   [ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение


Задача 60302

Темы:   [ Иррациональные неравенства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .