Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 694]
На доске записано число 61. Каждую минуту число стирают с доски и записывают на это место произведение его цифр, увеличенное на 13. После первой минуты на доске записано 19 (6·1 + 13 = 19). Какое число можно будет прочитать на доске через час?
На доске записаны в ряд сто чисел, отличных от нуля. Известно, что каждое число, кроме первого и последнего, является произведением двух соседних с ним чисел. Первое число – это 7. Какое число последнее?
|
|
Сложность: 3 Классы: 9,10,11
|
Акции фирмы “Рога и копыта” каждый день меняют свою стоимость: поочерёдно то дорожают в $a$ раз, то дешевеют на $b$ рублей. Их стоимость уже трижды была равна $N$ рублей. Докажите, что рано или поздно она примет это значение и в четвёртый раз.
|
|
Сложность: 3 Классы: 10,11
|
Из точки
M по плоскости с постоянной скоростью ползёт муравей. Его путь
представляет собой спираль, которая наматывается на точку
O и гомотетична
некоторой своей части относительно этой точки. Сможет ли муравей пройти весь
свой путь за конечное время?
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Докажите, что 22225555 + 55552222 делится на 7.
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 694]