ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]      



Задача 66997

Темы:   [ Последовательности (прочее) ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Салимов Р.

Первая производная бесконечной последовательности $a_1, a_2$, ... – это последовательность  $a'_n = a_{n+1} - a_n$  (где  $n$ = 1, 2, ...), а её k-я производная – это первая производная её ($k$–1)-й производной
($k$ = 2, 3, ...).  Назовём последовательность хорошей, если она и все её производные состоят из положительных чисел. Докажите, что если $a_1, a_2$, ... и $b_1, b_2$, ... – хорошие последовательности, то и $a_1b_1, a_2b_2$, ... – хорошая последовательность.

Прислать комментарий     Решение

Задача 78269

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 10,11

Доказать, что для любых трёх бесконечных последовательностей натуральных чисел

a1... an ...
b1... bn ...
c1... cn ...

найдутся такие номера p и q, что

ap$\displaystyle \ge$aq, bp$\displaystyle \ge$bq, cp$\displaystyle \ge$cq.

Прислать комментарий     Решение

Задача 79475

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Частичные, верхние и нижние пределы ]
Сложность: 4-
Классы: 9

За дядькой Черномором выстроилось чередой бесконечное число богатырей. Доказать, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечно много богатырей и все они стояли по росту (не обязательно в порядке убывания роста).
Прислать комментарий     Решение


Задача 98181

Темы:   [ Последовательности (прочее) ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

На доску последовательно записываются натуральные числа. На n-м шаге (когда написаны числа  a1, a2, ..., an–1)  пишется любое число, которое нельзя представить в виде суммы  a1k1 + a2k2 + ... + an–1kn–1,  где ki – целые неотрицательные числа (на a1 никаких ограничений не накладывается). Доказать, что процесс написания чисел не может быть бесконечным.

Прислать комментарий     Решение

Задача 98589

Темы:   [ Последовательности (прочее) ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

В бесконечной последовательности натуральных чисел каждое следующее число получается прибавлением к предыдущему одной из его ненулевых цифр.
Докажите, что в этой последовательности найдётся чётное число.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .