|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Высоты $AH$, $CH$ остроугольного треугольника $ABC$ пересекают внутреннюю биссектрису угла $B$ в точках $L_1$, $P_1$, а внешнюю в точках $L_2$, $P_2$. Докажите, что ортоцентры треугольников $HL_1P_1$, $HL_2P_2$ и вершина $B$ лежат на одной прямой. В клетках квадратной таблицы 10×10 расставлены числа от 1 до 100. Пусть S1, S2, ..., S10 – суммы чисел, стоящих в столбцах таблицы. |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 592]
Сколько цифр у числа 21000?
a, b, c ≥ 0. Докажите, что
Докажите, что x² + y² + 1 ≥ xy + x + y при любых x и y.
Докажите, что при a, b, c > 0 имеет место неравенство
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 592] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|