|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
Докажите неравенство для положительных значений переменных: (a + b + c + d)² ≤ 4(a² + b² + c² + d²).
Докажите неравенство для положительных значений переменных:
Докажите неравенство для положительных значений переменных:
При каких значениях a и b выражение p = 2a² − 8ab + 17b² − 16a − 4b + 2044 принимает наименьшее значение? Чему равно это значение?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|