Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 200]
|
|
Сложность: 3+ Классы: 9,10
|
График линейной функции у = kх + k + 1, где k > 0, пересекает оси координат в точках А и В.
Какова наименьшая возможная площадь треугольника АВО (О – начало координат)?
|
|
Сложность: 3+ Классы: 9,10,11
|
Решите уравнение
|
|
Сложность: 3+ Классы: 9,10,11
|
Согласно одной неправдоподобной легенде, Коши и Буняковский очень любили по вечерам играть в дартс. Но мишень у них была необычная – секторы на ней были неравные, так что вероятности попасть в разные секторы были не одинаковы. Однажды Коши бросил дротик и попал в мишень. Следующим бросает Буняковский. Что более вероятно: что Буняковский попадёт в тот же сектор, в который попал Коши, или что он попадёт в следующий сектор по часовой стрелке?
|
|
Сложность: 3+ Классы: 10,11
|
Незнайка знаком только с десятичными логарифмами и считает, что логарифм суммы двух чисел равен произведению их логарифмов, а логарифм разности двух чисел равен частному их логарифмов. Может ли Незнайка подобрать хотя бы одну пару чисел, для которой действительно верны одновременно оба этих равенства?
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 200]