ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]      



Задача 64540

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 3

На рисунке изображен график функции  y = x² + ax + b.  Известно, что прямая AB перпендикулярна прямой  y = x.
Найдите длину отрезка OC.

Прислать комментарий     Решение

Задача 64719

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 9,10,11

Автор: Жуков Г.

Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
Докажите, что корни трёхчлена  f(x) имеют разные знаки.

Прислать комментарий     Решение

Задача 66083

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

Прислать комментарий     Решение

Задача 104097

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10,11

Даны квадратные трёхчлены  f и g с одинаковыми старшими коэффициентами. Известно, что сумма четырёх корней этих трёхчленов
равна р. Найдите сумму корней трёхчлена  f + g, если известно, что он имеет два корня.

Прислать комментарий     Решение

Задача 107740

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9

Известно, что корни уравнения  x² + px + q = 0  – целые числа, а p и q – простые числа. Найдите p и q.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .