ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 97]      



Задача 65269

Темы:   [ Математическая статистика ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Средние величины ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

В первой четверти у Васи было пять оценок по математике, больше всего среди них пятёрок. При этом оказалось, что медиана всех оценок равна 4, а среднее арифметическое 3,8. Какие оценки могли быть у Васи?

Прислать комментарий     Решение

Задача 66102

Темы:   [ Перестановки и подстановки (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?

Прислать комментарий     Решение

Задача 66151

Темы:   [ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9,10

На доске написаны  n > 3  различных натуральных чисел, меньших чем  (n – 1)!.  Для каждой пары этих чисел Серёжа поделил большее на меньшее с остатком и записал в тетрадку полученное неполное частное (так, если бы он делил 100 на 7, то он бы получил  100 = 14·7 + 2  и записал бы в тетрадку число 14). Докажите, что среди чисел в тетрадке найдутся два равных.

Прислать комментарий     Решение

Задача 73704

Темы:   [ Числовые таблицы и их свойства ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Пусть k и n – натуральные числа,  k ≤ n.  Расставьте первые n² натуральных чисел в таблицу n×n так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в k-м столбце была  а) наименьшей;  б) наибольшей.

Прислать комментарий     Решение

Задача 73721

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9,10

Найдите все решения уравнения  1/x + 1/y + 1/z = 1  в целых числах, отличных от 1.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .