Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 97]
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
а) В 99 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов.
б) В 100 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.
|
|
|
Сложность: 5+ Классы: 7,8,9,10
|
Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и
одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь
таковы, что если положить на их чашки равные грузы, то любая из чашек может
перевесить, если же грузы различны по массе, то обязательно перетягивает
чашка с более тяжелым грузом. Как за четыре взвешивания наверняка
определить фальшивую монету и установить, легче она или тяжелее остальных?
|
|
|
Сложность: 3- Классы: 6,7,8
|
Дано 25 чисел. Сумма любых четырех из них положительна.
Докажите, что сумма их всех тоже положительна.
|
|
|
Сложность: 3 Классы: 7,8,9,10
|
Пусть
a,
b,
c – длины сторон треугольника; α, β, γ – величины противолежащих углов. Докажите, что
aα +
bβ +
cγ ≥
aβ +
bγ +
cα.
|
|
|
Сложность: 3 Классы: 6,7,8
|
10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.
Сколько грибов собрал каждый?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 97]