Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 138]
|
|
Сложность: 4 Классы: 8,9,10,11
|
В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился.
Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Доска 2N×2N покрыта неперекрывающимися доминошками 1×2. По доске прошла хромая ладья, побывав на каждой клетке по одному разу (каждый ход хромой ладьи – на клетку, соседнюю по стороне). Назовём ход продольным, если это переход из одной клетки доминошки на другую клетку той же доминошки. Каково
а) наибольшее;
б) наименьшее возможное число продольных ходов?
|
|
Сложность: 4 Классы: 8,9,10
|
На столе лежат 2023 игральных кубика. За 1 рубль можно выбрать любой кубик и переставить его на любую из четырёх граней, которые сейчас для него боковые. За какое наименьшее количество рублей гарантированно удастся поставить все кубики так, чтобы на верхних гранях у них было поровну точек? (Количества точек на гранях каждого игрального кубика равны числам 1, 2, 3, 4, 5, 6, суммарное число точек на противоположных гранях всегда равно 7.)
|
|
Сложность: 4 Классы: 7,8,9
|
На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске:
первый – знак + или - , второй – одно из натуральных чисел от 1 до 1993. Игроки делают
по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце
игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой
наибольший выигрыш он может себе гарантировать?
|
|
Сложность: 4 Классы: 7,8,9
|
Среди 2000 внешне неразличимых шариков половина – алюминиевые массой 10 г, а остальные – дюралевые массой 9,9 г. Требуется выделить две кучки шариков так, чтобы массы кучек были различны, а число шариков в них – одинаково. Каким наименьшим числом взвешиваний на чашечных весах без гирь это можно сделать?
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 138]