ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В прямоугольном параллелепипеде ABCDA1B1C1D1 четыре числа – длины рёбер и диагонали AC1 – образуют арифметическую прогрессию с положительной разностью d, причём AA1 < AD < AB. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса R расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней ABB1A1, ADD1A1, ABCD, а вторая – граней BCC1B1, CDD1C1, A1B1C1D1. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми CD1 и AC1; в) радиус R.

Вниз   Решение


Рассмотрим степени пятерки: 1, 5, 25, 125, 625, ... Образуем последовательность их первых цифр: 1, 5, 2, 1, 6, ...
Докажите, что любой кусок этой последовательности, записанный в обратном порядке, встретится в последовательности первых цифр степеней двойки  (1, 2, 4, 8, 1, 3, 6, 1, ...).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1365]      



Задача 102965

Тема:   [ Замощения костями домино и плитками ]
Сложность: 2
Классы: 5,6

У Джузеппе есть лист фанеры, размером 22×15. Джузеппе хочет из него вырезать как можно больше прямоугольных заготовок размером 3×5. Как это сделать?
Прислать комментарий     Решение


Задача 102971

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 4,5

У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?
Прислать комментарий     Решение


Задача 103778

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 6

Автор: Ботин Д.А.

Разрежьте квадрат на три части, из которых можно сложить треугольник с тремя острыми углами и тремя различными сторонами.

Прислать комментарий     Решение


Задача 103815

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Таблицы и турниры (прочее) ]
Сложность: 2
Классы: 6

Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки.

Прислать комментарий     Решение


Задача 103827

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 6

Разрежьте фигуру, изображённую на рисунке, на две части, из которых можно сложить треугольник.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1365]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .