Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 416]
|
|
|
Сложность: 6- Классы: 9,10,11
|
На химической конференции присутствовало
k учёных химиков и алхимиков, причём
химиков было больше, чем алхимиков. Известно, что на любой вопрос химики всегда
отвечают правду, а алхимики иногда говорят правду, а иногда лгут. Оказавшийся
на конференции математик про каждого учёного хочет установить, химик тот или
алхимик. Для этого он любому учёному может задать вопрос: ``Кем является
такой-то: химиком или алхимиком?'' (В частности, может спросить, кем
является сам этот учёный.) Доказать, что математик может установить это за: а)
4
k вопросов; б) 2
k - 2 вопросов.
|
|
|
Сложность: 6 Классы: 9,10,11
|
k вершин правильного n-угольника закрашены. Закраска называется почти равномерной, если для любого натурального m верно следующее условие: если M1 – множество m расположенных подряд вершин и M2 – другое такое множество, то количество закрашенных вершин в M1 отличается от количества закрашенных вершин в M2 не больше чем на 1. Доказать, что для любых натуральных n и k ≤ n почти равномерная закраска существует и что она единственна с точностью до поворотов закрашенного множества.
|
|
|
Сложность: 6+ Классы: 8,9,10,11
|
За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой.
Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от
каждой страны, и никакие двое из одной группы не сидят за столом рядом.
|
|
|
Сложность: 7- Классы: 8,9,10,11
|
В нашем распоряжении имеются 3
2k неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3
k + 1 взвешиваний?
|
[Лягушка-путешественница]
|
|
Сложность: 3- Классы: 9,10,11
|
Лягушка прыгает по вершинам треугольника ABC, перемещаясь каждый раз в одну из соседних вершин.
Сколькими способами она может попасть из A в A за n прыжков?
Страница:
<< 44 45 46 47
48 49 50 >> [Всего задач: 416]